Use of Motor Protection Circuit Breakers with Variable-Frequency Drives

Bulletin 140M Motor Protection Circuit Breakers

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>Typical Application</td>
<td>2</td>
</tr>
<tr>
<td>Circuit Breakers on the “line side” of a VFD</td>
<td>3</td>
</tr>
<tr>
<td>Circuit Breakers on the “load side” of a VFD</td>
<td>4</td>
</tr>
<tr>
<td>Conclusion</td>
<td>5</td>
</tr>
</tbody>
</table>

Additional Resources

These documents contain additional information concerning related products from Rockwell Automation.

<table>
<thead>
<tr>
<th>Resource</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial Automation Wiring and Grounding Guidelines, publication 1770-4.1</td>
<td>Provides general guidelines for installing a Rockwell Automation industrial system.</td>
</tr>
<tr>
<td>AC Drives Wiring and Grounding Guide, publication DRIVES-IN001</td>
<td>Provides instructions for proper AC drive wiring.</td>
</tr>
</tbody>
</table>

You can view or download publications at http://www.rockwellautomation.com/literature/. To order paper copies of technical documentation, contact your local Allen-Bradley distributor or Rockwell Automation sales representative.
Introduction

A motor branch circuit, including a Variable Frequency Drive (VFD) and one or more Motor Protection Circuit Breakers (MPCBs), is a complex system and its performance depends on all components, devices, configuration and their interconnection.

In applications where an MPCB is to be used on the output (load side) of a VFD, several factors must be considered due to the influences of voltage pulses and current harmonics. Current harmonics and reflected voltage waves generated with long cables at the motor terminals can have a significant negative impact on the MPCB and switchgear performance if they are not taken into account appropriately.

This publication explains some considerations for the selection of MPCBs. The information in this paper has been developed through known engineering principles and validated by thorough testing and simulation.

Typical Application

Bulletin 140M Motor Protection Circuit Breakers provide the functional control and protection requirements as specified by local electrical codes such as the National Electrical Code (NEC). Whether in single- or multi-motor installations, the 140M MPCB provides several key control and protection functions required for these types of installations. MPCBs can provide the individual motor circuit with following functionality:

- Disconnect function, providing isolation of motor circuits
- Manual motor controller, turning the individual motor circuit on and off
- Motor overload protection, protecting the motor from thermal overload
- Short circuit protection for the individual motor and the conductors
General

MPCBs are designed to handle the operational frequency range up to 60 Hz. Since they include magnetic short circuit trip coils, the carrier frequency of the VFD should be selected as low as possible and must not exceed 4 kHz to avoid overheating. This is in agreement with recommendations given for line terminators and filters.

The actual motor operational current of the MPCBs (140M) should be as close as possible to the low end of their current (setting) range to keep the power loss at minimum.

When MPCBs, due to a partially loaded motor, operate at currents lower than the min. current setting, they are usually not able to trip thermally when additional heating in the magnetic trip coil occurs. The breaker, however, still is permanently experiencing the load of the voltage pulses as described below. Magnetic only versions (MCP) rated lower than 10 A with separate bimetallic overload-relays are also not suitable for these applications since the MCPs have no thermal trip capability for self protection. In addition, the bimetallic overload-relays rated 1 A and below would suffer from heating as well and probably not trip for self protection.

The user manual for each drive lists the cable length limitations based on drive size and the quality of the insulation system in the chosen motor. See publication “DRIVES-IN001; Wiring and Grounding Guidelines for Pulse Width Modulated (PWM) AC Drives”.

There are various options of filter solutions available to reduce voltage rise time or occurrences of reflected waves.

The application of filter solutions like line reactors (3R...) and reflected wave reactors (3RWR...) can be beneficial with regard to reduced voltage rise times whereas application of sine wave filters would eliminate the occurrence of reflected voltage waves.

To maintain the insulation coordination required for the entire drive system, the occurrence of reflected waves at the motor terminals must be limited to 1400 Vpk (see page 3). The max. permissible operational voltage therefore is 500V AC for these applications.

As an optimal solution, sine wave filters would reduce the occurrence of reflected voltage waves.

Circuit Breakers on the “line side” of a VFD

NEC §430.53 c) requires an MCCB or set of fuses for short-circuit protection on the line side of a VFD. An MPCB may be used on a single-motor application.

The input current of VFDs is non sinusoidal, containing high peaks and harmonic currents. The peak values can be 1.5…4 times higher than the VFD output currents. The 140M circuit breaker used on the line side of the drives will provide branch circuit protection against short circuits and isolation of the complete VFD circuit through the disconnecting function.

When the motor operates at low speed (low frequency of the output current) the peak input current value can rise noticeably and tripping of the line side breaker may occur.

- To avoid nuisance tripping, the line side breaker must be selected according to the maximum input current to the VFD, not to the rated motor full load current.
- Refer to the VFD User Manual for the listing of approved branch circuit protection devices and their sizing recommendations.
Circuit Breakers on the “load side” of a VFD

General

The use of an MPCB or an MCP (plus overload relay) for short circuit protection is required in cases where a bypass of the VFD is used (for example, a contactor).

In multiple motor applications NEC §430, part III, requires individual overload protection, that is, (thermal) overload function, on the load side of a VFD only (see NEC Part X, §430.124 c).

When the devices are installed on the load side of a VFD, several aspects have to be considered to help ensure proper and reliable operation:

VFDs are limited to a max. output current. The fixed short circuit trip level of MPCBs on the other hand is approximately 13 times the max. current setting. Since the cut off time of the VFD is in the range of μs whereas the reaction time of the trip unit is in the range of ms no short circuit protection function of an individual branch in a multi motor application is given through the MPCB, even if the trip current value does not exceed the max. output current of the VFD. Only a thermal trip might occur.

Due to the PWM voltage pulses and due to the surge impedance of the motor, reflections of the voltage pulses occur at the terminals of the motor. Their amplitude is dependent of the
- system voltage
- voltage rise time t_{rise} of the VFD
- current rating of the MPCB (surge impedance)
- operational voltage (DCBUS-voltage)
- location of the MPCB (close to the VFD output or close to the motor)
- cable type and length between MPCB and motor (surge impedance).

System voltages up to 240V AC need no specific consideration. To reduce the impact on the system components at higher operational voltages,
- the interconnection between VFD and motor should be as short as possible and not exceed manufacturers’ recommendations.
- Location of the MPCB near the motor is the preferred solution.

The formula to determine the max. permissible (“critical”) cable length l_{crit} at which reflected voltage phenomena are fully developed given by motor and drive manufacturers is a suitable estimation also for applications with MPCBs located near the VFD:

Equation 1

$$l_{crit} = \frac{v_{cable} \cdot t_{rise}}{2}$$

- l_{crit} - critical length
- v_{cable} - propagation speed
- t_{rise} - rise time of VFD pulses
Typical pulse propagation speed on a cable is $v_{\text{cable}} \approx 150 \text{ m/μs}$. The voltage rise time t_{rise} is dependent on the drive semiconductor technology.

<table>
<thead>
<tr>
<th>Semiconductor Technology</th>
<th>$t_{\text{rise min.}}$</th>
<th>$t_{\text{rise max.}}$</th>
<th>l_{crit} [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>BJT</td>
<td>0.2</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>GTO</td>
<td>2</td>
<td>4</td>
<td>150</td>
</tr>
<tr>
<td>IGBT</td>
<td>0.05</td>
<td>0.4</td>
<td>3.75</td>
</tr>
</tbody>
</table>

Example: Assuming a voltage rise time of 200 ns (example: for BJT) the critical length is 15 m.

If MPCBs are located near the output of the VFD, those devices rated 10 A and above are not significantly affected by these effects due to their constructional properties. The surge impedance of MPCBs < 10 A, however, does not match that of the cable sufficiently therefore reflected voltage waves originated at the motor terminals and returning to the MPCB cause high dielectric stress on the trip coils resulting in accelerated aging of the insulation and probably disabling of the instantaneous short circuit trip function.

For
- Standard MPCBs rated 10 A and higher the max. cable lengths of drive manuals apply.
- Standard MPCBs below 10 A the value according to the equation or the drive manual applies, whichever is lower. Alternatively specific MPCBs suitable for downstream VFD applications shall be used.

Always take measurements of rise times on site to verify the real conditions.

Single Motor Applications

NEC §430.53 c) requires an MCCB, MPCB, or set of fuses for short-circuit protection on the line side only. To cover a disconnect function, if required, load switches suitable for use as disconnecting means should be used.

Multi Motor Applications

The following rules apply as referenced above:
- Cable between VFD (example: Power Flex Series) and MPCB (example: 140M) kept as short as possible.
- Wire lengths between MPCB and motor should not differ more than 10%.
- The lowest motor rating (highest impedance) defines the permissible cable length.

Conclusion

Unless specifically stated as suitable for use, switchgear selection in these applications should take into account the complexity of the system dynamics such as capacitive loads and reflected wave. There are several factors that must be considered in the installations where MPCBs are used at the output of VFD to minimize the influence of voltage pulse and current harmonics.

- The MPCB should be selected so that its current setting is close to the low end of the setting range. This reduces the basic temperature level at the trip coil.
• For standard MPCBs rated 10 A and higher - The interconnection between the VFD and motor should be as short as possible and not exceed drives manufacturer recommendations.

• For standard MPCBs below 10 A - The maximum permissible ("critical") cable length l_{crit} value according to Equation 1 or the drive manual applies, whichever is lower. Equation 1 to determine l_{crit} values given by motor and drive manufacturers, at which reflected voltage phenomena are fully developed, is also a suitable estimation for applications with MPCBs located near the VFD.

• The preferred location of MPCB installations is as close to the motor as possible, in order to reduce the cable length between the motor and MPCB.

• The chopping frequency of the VFD should be as low as possible and not exceed 4 kHz.

• Filter solutions, like line reactors and reflected wave reactors, can be applied to reduced voltage rise times, whereas application of sine wave filters would eliminate the occurrence of reflected voltage waves. These are generally suggested by drive manufacturers.

• Always take measurements of peak voltages to verify effectiveness of the measures.

• The surge impedance of electronic overload relays is also low in principle and unless specifically stated they are not suitable for this kind of application, since their current sensor technology may not be able to measure the load current and harmonics correctly when operating at frequencies outside their nominal sensing range.

• Main circuits of contactors and load switches are normally not affected as described above, due to their low surge impedance. However, depending on capacitive load through long cables or capacitor charging currents, contact welding might occur when switched under load so consideration related to capacitive load shall be taken in account in selection of these devices to be used with drives.
Important User Information

Read this document and the documents listed in the additional resources section about installation, configuration, and operation of this equipment before you install, configure, operate, or maintain this product. Users are required to familiarize themselves with installation and wiring instructions in addition to requirements of all applicable codes, laws, and standards.

Activities including installation, adjustments, putting into service, use, assembly, disassembly, and maintenance are required to be carried out by suitably trained personnel in accordance with applicable code of practice.

If this equipment is used in a manner not specified by the manufacturer, the protection provided by the equipment may be impaired.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for actual use based on the examples and diagrams.

No patent liability is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is prohibited.

Documentation Feedback

Your comments will help us serve your documentation needs better. If you have any suggestions on how to improve this document, complete this form, publication RA-DU002, available at http://www.rockwellautomation.com/literature/.

Rockwell Otomasyon Ticaret A.Ş., Kar Plaza İş Merkezi E Blok Kat:6 34752 İçerenköy, İstanbul, Tel: +90 (216) 5698400

www.rockwellautomation.com

Power, Control and Information Solutions Headquarters

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444
Europe/Middle East/Africa: Rockwell Automation NV, Pegasus Park, De Kleeltlaan 12a, 1831 Diegem, Belgium, Tel: (32) 2 663 0600, Fax: (32) 2 663 0640
Asia Pacific: Rockwell Automation, Level 14, Coex F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2508 1846

Publication 140M-AT002A-EN-P - March 2015