Fiberglass Rebar

Technically referred to as Glass Fiber Reinforced Polymer, or GFRP Rebar

Benefits of GFRP Rebar
- Impervious to chloride ion and low pH chemical attack
- Tensile strength greater than steel
- 1/4th weight of steel reinforcement
- Transparent to magnetic fields and radio frequencies
- Non-conductive
- Thermally non-conductive

Where should GFRP Rebar be considered?
- Any concrete member susceptible to corrosion of steel reinforcement by chloride ion or chemical corrosion
- Any concrete member requiring non-ferrous reinforcement due to electro-magnetic considerations
- As an alternative to epoxy, galvanized or stainless steel rebar
- To strengthen un-reinforced masonry

Corrosive Applications
- Concrete Exposed to De-Icing Salts
 Bridge decks, Median barriers, Approach slabs, Parking structures, Railroad crossings, Salt storage facilities
- Concrete Exposed to Marine Salts
 Seawalls, Buildings & structures near waterfronts, Aquaculture operations, Artificial reefs and water breaks, Floating marine docks
- Tunneling and Mining Applications
 Soft-eye openings for tunnel boring machines (TBM's) and temporary works, Rock nails, Electrolytic and ore extraction tanks
- Electromagnetic Applications
 MRI rooms in hospitals
 Airport radio & compass calibration pads
 Concrete near high voltage cables, transformers and substations
- Masonry Strengthening
 Seismic, wind or blast strengthening of unreinforced masonry, increase flexural and shear strength.
- Other Corrosive Applications
 Concrete used in chemical plants and containers
 Any polymer concrete requiring reinforcement
 Architectural precast and cast stone elements
 Thin concrete sections where adequate cover is not available
 Swimming Pools
Physical Properties - Aslan 100, 101 GFRP Rebar

Aslan 100 Vinyl Ester Matrix GFRP Rebar

Aslan 101 Polyester Matrix GFRP Rebar for non-portland cement and temporary use applications.

I. Tensile Stress, Nominal Diameter & Cross Sectional Area

<table>
<thead>
<tr>
<th>Diameter (mm)</th>
<th>Area (mm²)</th>
<th>Guaranteed Tensile Strength (MPa)</th>
<th>Ultimate Tensile Load (kN, kips)</th>
<th>Tensile Modulus of Elasticity (GPa, psi 10⁶)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (in)</td>
<td>(in²)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 6 1/4</td>
<td>31.67</td>
<td>825 120</td>
<td>26.2 5.89</td>
<td>40.8 5.92</td>
</tr>
<tr>
<td>3 10 3/8</td>
<td>71.26</td>
<td>760 110</td>
<td>54.0 12.1</td>
<td>40.8 5.92</td>
</tr>
<tr>
<td>4 13 1/2</td>
<td>126.7</td>
<td>690 100</td>
<td>87.3 19.6</td>
<td>40.8 5.92</td>
</tr>
<tr>
<td>5 16 5/8</td>
<td>197.9</td>
<td>655 95</td>
<td>130 29.1</td>
<td>40.8 5.92</td>
</tr>
<tr>
<td>6 19 3/4</td>
<td>285.0</td>
<td>620 90</td>
<td>177 39.8</td>
<td>40.8 5.92</td>
</tr>
<tr>
<td>7 22 7/8</td>
<td>387.9</td>
<td>586 85</td>
<td>227 51.1</td>
<td>40.8 5.92</td>
</tr>
<tr>
<td>8 25 1</td>
<td>506.7</td>
<td>550 80</td>
<td>279 62.8</td>
<td>40.8 5.92</td>
</tr>
<tr>
<td>9 29 1-1/8</td>
<td>641.3</td>
<td>517 75</td>
<td>332 74.6</td>
<td>40.8 5.92</td>
</tr>
<tr>
<td>10 32 1-1/4</td>
<td>791.7</td>
<td>480 70</td>
<td>382 85.9</td>
<td>40.8 5.92</td>
</tr>
</tbody>
</table>

Hughes Brothers reserves the right to make improvements in the product and/or process which may result in benefits or changes to some physical-mechanical characteristics. The data contained herein is considered representative of current production and is believed to be reliable and to represent the best available characterization of the product as of May 2007. Tensile tests per ASTM D7205.

Bond Stress
Bond of GFRP to concrete is controlled by friction due to surface roughness of the GFRP rods and mechanical interlock of the GFRP rod against the concrete.

Maximum Bond Stress.................................11.6 MPa (1679 psi)
Based on pull out tests performed using the ACI 440.3R-04 Method B.3.

Coefficient of Thermal Expansion:
- Transverse Direction 18.7 x 10⁻⁶/F 33.7 x 10⁻⁶/°C
- Longitudinal Direction 3.66 x 10⁻⁶/F 6.58 x 10⁻⁶/°C

Specific Gravity: 2.0 per ASTM D792

Shear Stress:
Shear stress 22,000 psi (152 MPa) per ACI 440.3R-04 Test B.4.

Contact Information
Hughes Brothers, Inc.
210 N. 13th Street • Seward, NE 68434
Phone 800-869-0359 402-643-2991
Fax 402-643-2149
Email: doug@hughesbros.com
www.hughesbros.com
Durability

Potential durability versus traditional steel reinforcement is one of the chief benefits of GFRP Rebar. However, being a relatively new material for use as a concrete reinforcement, decades of performance data are not available.

Fortunately, research from the ISIS network in Canada which involved extracting GFRP bars from several bridges and structures across Canada that have been in service from between 5 to 8 years reveals NO DEGRADATION of the GFRP bars. (Durability of GFRP Reinforced Concrete from Field Demonstration Structures – M. Onofrei University of Manitoba, May 2005). This performance matches that of GFRP dowel bars that had been extracted from service in Ohio after 20 years.

Creep

When subjected to a constant load, all structural materials, including steel, may fail suddenly after a period of time, a phenomenon known as creep rupture. Creep tests conducted in Germany by Bundelmann & Rostasy in 1993, indicate that if sustained stresses are limited to less than 60% of short term strength, creep rupture does not occur in GFRP rods. For this reason, GFRP rebars are not suitable for use as prestressing tendons. In addition, other environmental factors such as moisture can affect creep rupture performance.

Based on proposed ACI 440 design guidelines, it is recommended that the sustained tensile stress not exceed 20% of minimum ultimate tensile stress. For a summary of the recommended design guidelines, refer to 440.1R-06 or your controlling national guide.

Stirrups, Shapes and Bends

Bends in Aslan GFRP Rebar are fabricated by shaping over a set of molds or mandrels prior to thermoset of the resin matrix. Field bends are not allowed.

It is recommended that you work with the factory in the early stages of design, as not all standard bends and shapes are readily available. For example, a J-Hook at the end of a 10 meter length of rebar would be achieved by lap splicing a J-hook piece to the 10 meter rebar.

- All bends must be made at the factory.
- Bent portions of GFRP rebars have a lower tensile strength than straight portions.
- The narrowest inside stirrup width is 10", (15 inches for #7 & #8 bar).
- Bends are limited to shapes that continue in the same circular direction. Otherwise lap splices are required.

<table>
<thead>
<tr>
<th>Available ACI Bends</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dia.</td>
</tr>
<tr>
<td>#2</td>
</tr>
<tr>
<td>#3</td>
</tr>
<tr>
<td>#4</td>
</tr>
<tr>
<td>#5</td>
</tr>
<tr>
<td>#6</td>
</tr>
<tr>
<td>#7</td>
</tr>
<tr>
<td>#8</td>
</tr>
</tbody>
</table>

For Large Radius Curves Minimum Allowable Radius

<table>
<thead>
<tr>
<th>Bar Diameter</th>
<th>Allowable Radius</th>
</tr>
</thead>
<tbody>
<tr>
<td>#2 6mm</td>
<td>34" 864mm</td>
</tr>
<tr>
<td>#3 9mm</td>
<td>51" 1295mm</td>
</tr>
<tr>
<td>#4 13mm</td>
<td>67" 1702mm</td>
</tr>
<tr>
<td>#5 16mm</td>
<td>84" 2134mm</td>
</tr>
<tr>
<td>#6 19mm</td>
<td>101" 2565mm</td>
</tr>
<tr>
<td>#7 22mm</td>
<td>118" 2979mm</td>
</tr>
<tr>
<td>#8 25mm</td>
<td>135" 3429mm</td>
</tr>
<tr>
<td>#9 29mm</td>
<td>152" 3861mm</td>
</tr>
<tr>
<td>#10 32mm</td>
<td>186" 4267mm</td>
</tr>
</tbody>
</table>

Contact Information

Hughes Brothers, Inc.
210 N. 13th Street • Seward, NE 68434
Phone 800-869-0359 402-643-2991
Fax 402-643-2149
Email: doug@hughesbros.com
www.hughesbros.com
Design Considerations

A direct substitution between GFRP and steel rebar is not possible due to various differences in the mechanical properties of the two materials. In traditional steel-reinforced concrete design, a maximum amount of steel reinforcing has been specified so that the steel is the weak link in a structure. When weakened, the steel rebars stretch or yield and give a warning of pending failure of the concrete member. When using GFRP Rebars, ACI committee 440’s design guidelines recommend a minimum amount of GFRP rebar rather than a maximum. If a member fails, the concrete will be the weak link and will crush in compression. The crushing concrete will serve as the warning of failure and there will still be ample reserve tensile capacity in the GFRP reinforcing.

Another major difference is that serviceability will be more of a design limitation in GFRP reinforced members than in steel reinforced members. Due to its lower modulus of elasticity, deflection and crack width will affect the design. Deflection and crack width serviceability requirements will provide additional warning of failure prior to compression failure of concrete. In many instances, deflection and crack width will control design.

Handling and Placement

- When necessary, cutting of GFRP rebars should be done with a masonry or diamond blade, grinder or fine blade saw. A dust mask is suggested when cutting the bars. It is recommended that work gloves be worn when handling and placing GFRP rebars.
- Sealing of cut ends is not necessary since any possible wicking will not ingress more than a small amount into the end of a rod.
- GFRP rebar has a very low specific gravity and will tend to “float” in concrete during vibration. Care should be exercised to adequately secure GFRP in formwork using chairs, plastic coated wire ties or nylon zip ties.

Lap Splice Length

Given by 440.1R-06.

Quality Assurance

- To provide for lot or production run traceability, each lot is color coded.
- Individual rebars are tensile tested based on a random statistical sampling, with a minimum of 5 samples per production lot.
- Certification of conformance is available for any given production lot.
- In addition, quality assurance tests are routinely performed to determine:
 - Glass content (i.e. impregnation ASTM D2584)
 - Die wicking (checking for voids ASTM D5117)
 - Barcol hardness ASTM D2583
 - Cross sectional area ACI 440-K
 - Mass uptake in water ASTM D4475
 - Interlaminear shear or shear in flexure ASTM D4475
 - Tensile modulus and strain per ASTM D7205.

Masonry Strengthening

Aslan 100 GFRP bars can be used to increase the strength of existing unreinforced masonry walls in flexure (out-of-plane) and shear (in-plane).

This has important implications in areas that are subject to new seismic codes, hurricane wind loading or even blast mitigation schemes. In addition, Aslan 100 GFRP bars can be used to restore or increase the structural strength of existing masonry walls that have already cracked.

In many instances the strengthening procedure can maintain the visual appearance of the existing masonry, particularly in the case of shear reinforcing.

Contact Information

Hughes Brothers, Inc.
210 N. 13th Street • Seward, NE 68434
Phone 800-869-0359 402-643-2991
Fax 402-643-2149
Email: doug@hughesbros.com
www.hughesbros.com